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In this paper we develop some combinatorial models for continuous spaces. We 
study the approximations of continuous spaces by graphs, molecular spaces, and 
coordinate matrices. We define the dimension on a discrete space by means of 
axioms based on an obvious geometrical background. This work presents some 
discrete models of n-dimensional Euclidean spaces, n-dimensional spheres, a 
toms, and a projective plane. It explains how to construct new discrete spaces 
and describes in this connection several three-dimensional closed surfaces with 
some topological singularities. It also analyzes the topology of (3 + l)-space- 
time. We are also discussing the question by R. Sorkin about how to derive the 
system of simplicial complexes from a system of open coverings of a topological 
space. 

1. I N T R O D U C T I O N  

A n u m b e r  o f  workers  have been u n h a p p y  a b o u t  app l ica t ions  o f  the 
c o n t i n u u m  pic ture  o f  space and  spacet ime.  They  believe tha t  the break-  
down  o f  the funct ional  in tegral  a t  the P lanck  length shows no t  merely  the 
fai lure o f  the classical  field equat ions ,  bu t  also tha t  a differential  man i fo ld  
u p o n  which they are  bui l t  should  be replaced  by  some finite theory.  This  
was cer ta inly  one o f  the mot iva t ions  beh ind  Penrose ' s  (1971) invent ion  o f  
spin ne tworks  and  recent  works  by  F inke ls te in  (1989) on  a novel  space t ime 
micros t ruc ture .  I s h a m  et  al. (1990)  in t roduce  a q u a n t u m  theory  on the set 
o f  all topologies  on a given set, and  show tha t  for  a finite basic  set a lmos t  
all metr ics  can be ob ta ined  by  embedd ing  this set into a vector  space and  
then vary ing  the n o r m  of  this space. 

A n o t h e r  a p p r o a c h  to a combina to r i a l  mode l  o f  space and  spacet ime is 
s tudied  by  Sork in  (1991). H e  replaces general  topo log ica l  spaces by  finite 
ones and  descr ibes  how to associa te  a finite space with  any  local ly  finite 
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covering of a topological space. He also presents some examples of posets 
derived from simple spaces. Some features of this approach are discussed 
by Balachandra et al. (1993). 

Another approach is Regge calculus (Regge, 1961). Many suggestions 
for formulating various Regge calculus versions have been made in order to 
face a number of problems. Regge calculus describes general relativity space- 
time by using a simplicial complex. Its fundamental variables are a set of 
edge lengths and an incidence matrix that describes how they are connected. 
One approach supposes that the connectivity of a simplicial complex is fixed, 
but the lengths of edges can be varied. Another approach fixes the edge 
length and varies the connectivity of a simplicial complex in order to change 
the metric of a spacetime. The Regge calculus, however, supposes that there 
is a continuous underlying spacetime and does not account naturally for the 
appearance of a minimal length in effective theories. 

At the same time in mathematics there exist several recently developed 
approaches to discrete spaces in the frame of digital topology which can be 
useful in physics. Digital topology is the study of topological properties of 
image arrays. It provides the theoretical foundations for image processing 
operations such as image thinning, border following, and object counting. 
Kong and Rosenfeld (1989) review the fundamental concepts of digital 
topology, survey the major theoretical results in this field, and give a 
bibliography of almost 140 references. 

Traditionally a discrete or digital space is considered as a graph whose 
edges between vertices define the nearness and connectivity in the neighbor- 
hood of any vertex. 

This approach was used by Rosenfeld (1970, 1979), who proved the 
first version of the Jordan curve theorem by using a graph-theoretic model 
of a digital plane. However, this model does not utilize a topological basis 
and requires different nearness for the curve and its background. 

An alternative topological approach to digital topology uses the 
notion of a connected topology on a totally ordered set Z of integers 
(Halimski, 1977; Khalimsky et al., 1990; Kong et at., 1991; Kopperman et 
al., 1991). The digital plane Z • Z or the three-dimensional digital space 
Z • Z x Z are the topological products of two or three such spaces, 
respectively. Using this construction, the Jordan curve theorem in two and 
three dimensions was proven. Another approach to finite topology is 
offered by Kovalevsky (1989). He builds the digital space as a structure 
consisting of dements of different dimensions by using such a well known 
element in topology as a cellular complex. 

Our approach to discrete spaces is based on three combinatorial tools: 
(Ivaschenko, 1984, 1988, 1994, 1993a,b; Ivashchenko and Yeh, 1994). The 
material presented below begins with a short description of some geometri- 
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cal background for the definition of  the dimension on a graph. Then we 
show the connection between a graph, a molecular space, and a coordinate 
matrix. We define the dimension on discrete spaces which is based on some 
geometrical ground. We analyze the dimensions of  different models of  two-, 
three-, and n-dimensional discrete spaces. We present some examples of 
three-dimensional discrete closed spaces with strange topological features 
which do not have direct continuous analogies. Then we prove some 
theorems showing how to construct closed three-dimensional spaces with 
nonstandard topology. Finally we discuss the topological structure of a 
(3 + 1) space-time. 

2. GEOMETRICAL BACKGROUND FOR THE DEFINITION OF THE 
DIMENSION ON A GRAPH 

We construct now a graph with certain properties which can be 
thought of  as a convenient tool for describing the ideas of  nearness and 
continuity by combinatorial methods. This will be done first by picking out 
in elementary geometry those properties of  nearness which seem to be 
fundamental and taking them as axioms. To get a glimpse of  the intuitive 
geometrical ground of  the dimension consider the following example. Let 
E n be n-dimensional Euclidean space and p a point in it. The neighborhood 
of  p is commonly defined to be any set U such that U contains an open 
solid disk D]' of  center p. The boundary of  this disk is the sphere $ 7 -  1. 

The definition of  neighborhood is formulated in this way so as to be 
as free as possible from the ideas of  size and shape, concepts that play no 
part in topology. 

Using this definition of  a neighborhood of a p in Euclidean space, it is 
easy to see that the family of sets U satisfy the usual topological axioms. 

1. p belongs to any neighborhood of  p. 
2. If  U is a neighborhood of  p and U c V, then V is a neighborhood 

o fp .  
3. If  U and V are neighborhoods of p, so is U c~ V. 
4. If  U is a neighborhood of  p, then there is a neighborhood V of  p 

such that V c U and V is a neighborhood of each of  its points. 

Taking these properties as axioms in an abstract formulation, we can 
define a topological space E as a set E with a family of  subsets of  E 
satisfying the four properties listed above. We can also define a subset W 
of E open if for each point p in W, W is a neighborhood of  p. 

Note that the disk D~ plays a crucial role in this definition. 



1 ~ 6  ~ o  

In the continuous case the sphere S~'-~ contains in itself an infinite 
sequence of  disks D7 and spheres S n-  ~ of  center p: 

D ' ~  D D ' ~  ~ . . " D D T ~ " " 

$ 7 - 1 ~  S , ~ - 1 ~ .  . . ~ S , ]  - 1  ~ . . . 

However, the situation is different in the discrete case, where the sequences 
of  disks and spheres cannot be infinite and axiom 4 is not realized. 
Therefore we have a finite series of  the form 

$7 -1  ~ S ~  -1  ~ . . .  ~ S 7  -1  

The smallest disk D7 and the smallest sphere S t -  ~ cannot be reduced in the 
sense that they do not contain disks and spheres others than themselves 
(Fig. 1), 

The topological meaning of this construction for a graph reveals that 
the vertex p is considered as n-dimensional if its minimal punctured 
neighborhood is the sphere S n-  1 

The point p and the nearest sphere S n-  1 together form the smallest 
disk D ~ of  center p. Point p of  a discrete space G is considered as 
one-dimensional if its nearest neighborhood is a zero-dimensional sphere 
S ~ It  is well known that S o is a set of  two disconnected points. In the other 
words S O is a disjoined graph of two points. In a one-dimensional discrete 
sphere S ~ all points are one-dimensional. Obviously the minimal number of  
points required for S ~ is four. For a two-dimensional discrete sphere S 2 all 
its points are two-dimensional. This means that the nearest neighborhood 
of any point of  S 2 should be S 1 and so on. 

P 

Fig. 1. Difference between an infinite and a finite number of enclosed disks D n in continuous 
and discrete spaces, respectively. 
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3. A M O L E C U L A R  SPACE AND A C O O R D I N A T E  MATRIX 
O F  A G R A P H  

In order to make this paper  self-contained we shall summarize the 
necessary results f rom our previous papers. Let E ~176 be infinite-dimensional 
Euclidean space. Take the coordinates of  a point x, x~E ~176 as a sequence 
of  real numbers 

x = (xl, x2 . . . . .  xn . . . .  ) = [xi], i~N 

We define a unit cube KeE ~ in the following way: each x, xeK, has 
coordinates xi satisfying conditions presented in Ivashchenko (1984, 1988, 
1994, 1993b): 

ni < xi < n; + 1, i ~N, n~ integer 

Therefore, K is an infinite-dimensional cube with unit edges. In 
Ivashchenko (1984, 1988, 1994, 1993b) K i s  called a brick (kirpich). We will 
use this name in the present paper. 

The position of  K in E ~ is determined by the left vertex coordinates. 
For  the given brick we have 

K = (nl, n2, �9 �9 �9 n n , . . . )  = [ni], i~N 

Two bricks are called adjacent if they have common points. The 
distance d(Kl, K2) between bricks K1 = [ni] and K2 = [mi] is defined by 
using sup norm 

d(K1, K2) = max[ni - mi [, i~N 

Obviously, two bricks are adjacent if  their appropriate coordinates 
differ by not more then 1, or the distance between them equals 1. Any set 
of  bricks in E ~ is called a molecular space and is denoted by M. Clearly, 
any molecular space can be represented by its intersection graph G(M). It  
was shown in Ivashchenko (1988, 1993b) that any graph G can be repre- 
sented by a molecular space M(G) such that G = G(M(G)). Clearly, more 
than one M(G) can be built for the graph G. There exists an isomorphism 
between any two M(G). Let M be a molecular space with a set of  bricks 

V = (K,, K 2 , . . . ,  K,), Kl = [ku], K2 = [k2,], �9 �9 �9 K, = [k,,.] 

The matrix [kpi] is called the coordinate matrix of  the molecular space M 
and its intersection graph G(M) and is denoted A(M) or A(G(M)). This 
matrix has n rows and infinite columns. 

In fact we shall always use a finite-dimensional Euclidean space. The 
intuitive background for using the infinite-dimensional unit cube is the 
at tempt to create some universal element not depending on the dimension 
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5 4 M(G) 
G 

~ 2. 

0 1 i... 
1 2 2... 
2 2 i... 
2 1 0... 
1 0 0... 

A(G) 
Graph G, its molecular space M(G), and its coordinate matrix A(G). 

and suitable for describing elements of different dimensions: zero-dimen- 
sional point, one-dimensional lines, two-dimensional surfaces, and so on. 

Let S be a surface in EL The molecular space M(S)  of S is the set of 
bricks intersecting S. 

Figure 2 shows the graph G, its molecular space M, and its coordinate 
matrix A. 

4. THE DIMENSION AND THE METRIC OF A DISCRETE SPACE 

Our objective now is to define the dimension on graphs. Later we will 
use the names discrete space and point for a graph and its vertex when we 
want to emphasize the notion of the dimension on it. 

Since in this paper we only use induced subgraphs, we shall use the 
word subgraph for an induced subgraph. We shall also use some symbols, 
notations, and names introduced in our previous work. 

Definitions. Let G, G1, and v be a graph, a subgraph of G, and a point 
of G, respectively. 

�9 The subgraph B(G1) containing G~ is called the ball of G~ if any 
point of B(G~) is adjacent to at least one point of GI. 

�9 The subgraph of B(G1) without points of G1 is called the rim of G1 
and is denoted by O(G1). 

Obviously B(GI) - Gl = O(G1). 
�9 If  G~ is a point v, then B(v) and O(v) are called the ball and the tim 

of v, respectively. 
�9 The subgraph B(vl, v2,. �9 �9 v,) = B(vl) c~B(v2) c~.. .  B(v,) is called 

the joint ball of the points vt, v2 . . . . .  v~. 
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�9 T h e  subgraph O(vl, U 2 , . . . ,  Vn) ~" O(Vl )  f )  O(v2 )  ('~" " " O(Vn) i s  c a l l e d  

the joint rim of the points Vl, v2 . . . . .  v,. 
Let G and G1 be a graph and its subgraph with points (vl, v2, �9 �9 �9 v,) 

and (vl, v2 . . . . .  vp), respectively. It is clear that 

O ( G ~ )  = O ( v O  u O(v2)  u . . " u O(vp)  - Gx 

8 ( G 1 )  = B(v~)  u B (v2 )  • .  . . •  B (vp)  

�9 A graph K,(v~, v2 . . . . .  v,) of n points is called completely con- 
nected or complete if any of its two points are adjacent. 

�9 A graph H,,(v~, v 2 , . . . ,  v,) of n points is called completely discon- 
nected if any two of its points are disjoined. 

�9 The join GI .  G 2 of tWO graphs G~ and G2 is the graph which 
consists of two graphs G~ and G2 and all edges joining points of G~ with 
points of G2. To this end we begin by defining the dimension on a graph 
in the following way. 

Definition I. Zero-dimensional normal space S o is the graph which 
consists of two nonadjacent points. 

Definition 2. A point v of a graph G is called a normal n-dimensional 
point if its rim O(v) is a normal (n - 1)-dimensional space. 

Definition 3. For any integer n, n > 1, define a normal n-dimensional 
space to be a connected graph in which every point is n-dimensional 
normal. 

According to these definitions, one-dimensional normal space is any 
circle C,, n > 4. 

Further, p(G) will be used for the dimension of a graph G. 
Figure 3 represents normal zero-, one-, and two-dimensional spheres 

and one-, two-, and three-dimensional disks. 
Figure 4 shows normal two-dimensional discrete flat spaces and their 

molecular spaces. E 2 is the two-dimensional discrete space in Khalimsky 
topology (Halimsky, 1977; Khalimsky et al., 1990; Kong and Rosenfeld, 
1989; Kong et al., 1991; Kopperman et al., 1991). 

The three-dimensional normal sphere is the graph S 3 depicted in Fig. 
5. It can be verified without difficulties that the complete (n + 1) partite 
graph K(2, 2 . . . .  ,2) is the minimal graph describing S" (Ivashchenko, 
1984, 1988; Ivashchenko and Yeh, 1994). Therefore, the minimal number 
of elements necessary to describe S" is 2n + 2. Notice that the same number 
of points is used by Sorkin (1991) to describe S" in the finitary topology 
approach. 

A normal torus T 2 and a projective plane p2 are presented in Fig. 5. 
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Fig. 3. 

S O 

@ | 

P(v I )=1 

P(V2)=2 p(v3)= 2 

P(V4)=3 
I I  

! i Zero- (SO), one- (S~, $2), and two- (S 2) dimensional normal discrete spheres> and 
one- (v~), two- (v2, v3), and three- (v4) dimensional points. 

Fig. 4. 

2 
E1 E2 

2 

Normal discrete two-dimensional planes and their molecular spaces. E~ is the 
two-dimensional plane in Khalimsky topology. 
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1 1 2 3 4 1 ~ ~ 
6 2 2 

7 

1 S3 T 2 p2 

Fig. 5. A discrete normal three-dimensional sphere S 2, a two-dimensional torus T 2, and a 
two-dimensional projective plane p2. The Euler characteristic and the homology groups of 
these graphs are consistent with the Euler characteristic and the homology groups of their 
continuous counterparts. 

It can be checked directly that the Euler characteristic and the 
homology groups of all graphs depicted in Figs. 3 -5  match the Euler 
characteristic and the homology groups of  their continuous counterparts 
(Ivashchenko, 1994, 1993a). 

In Ivashchenko (1984) normal n-dimensional space is called type 1-I2. 
This separation into different types is caused by the fact that the normal 
molecular spaces and graphs of  any type 1-I,, n r 1, 2, have some unusual 
properties different from those of  direct discrete models of  continuous 
spaces in Em. 

Our objective now is to define a generalization of the dimension which 
includes the above definition. It is natural to consider a point n as 
zero-dimensional if its neighborhood does not contain any normal space. 

Definition 4. A point v of  a graph G is called zero-dimensional, 
p(v) = 0, if O(v) does not contain the normal zero-dimensional sphere S ~ 

Definition 5. A connected graph G is called zero-dimensional, 
p(G) = 0, if each of  its points is zero-dimensional. 

By this definition, in a zero-dimensional connected graph any two 
points are adjacent. Therefore, this graph is a complete graph on any 
number of  vertices. A disconnected zero-dimensional graph is considered as 
a zero-dimensional sphere S O if it has exactly two components. It is clear 
that S O contains a normal zero-dimensional sphere as its subgraph. We will 
extend this analogy to higher dimensions. 

Definition 6. A graph G is called closed n-dimensional if: 
1. For  any point v, p(v) < n. 
2. G is homotopic to some normal n-dimensional space. 



1 ~ 2  ~ o  

Definition 7. A point v is called n-dimensional, p(v) = n if." 
1. O(v) contains a closed (n - 1)-dimensional space. 
2. O(v) does not contain any closed n- or higher-dimensional space. 

Definition 8. A graph G is called n-dimensional, p(G) = n, if: 
1. G contains at least one n-dimensional point. 
2. For  any point v, p(v) < n. 

In Definition 6 we use the homotopy of graphs. Two graphs are called 
homotopic if each of them can be turned into the other by contractible 
transformations which consist of contractible gluing and deleting of  ver- 
tices and edges of a graph. It was shown (Ivashchenko, 1994, 1993a; 
Ivashchenko and Yeh, 1994) that these transformations do not change the 
Euler characteristic and the homology groups of  graphs. 

Let us look at some examples of  n-dimensional (not normal) discrete 
spaces and their molecular spaces. 

Spheres S ~ S 1, their molecular spaces, and the molecular space M(S 2) 
of sphere S 2 are drawn in Fig. 6. M(S 2) is a hollow space, it does not 
contain the central unit cube. These spheres are not normal but satisfy 
Definitions 6 and 7. Any sphere S n depicted in Fig. 6 has the same Euler 
characteristic and homology groups as continuous S n and can be trans- 
formed to the sphere S n drawn in Fig. 3 by contractible transformations. 
Flat one-, two-, and three-dimensional spaces and their molecular spaces 
are shown in Fig. 7. It is easy to construct three- and higher-dimensional 
spaces, but it is difficult to draw them. For  a fiat three-dimensional space 

S 1 

mJm 
M(s 2 ) 

.cs" ) 
M(s ~ ) 

Fig. 6. Zero- and one-dimensional nonnormal spheres S O and S l and their molecular spaces 
M(S ~ and M(SI). M(S 2) is a molecular space of  the two-dimensionai nonnormal sphere S 2. 
It does not contain the central unit cube. 
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/ / / / ~ l  

H ( E  1 ) H ( E  2 ) 

3 
MiE ) 

1 2 
E E 

Fig. 7. Nonnormal discrete one- and two-dimensional fiat spaces E ~ and E 2 and their 
molecular spaces M(E 1) and M(E2). M(E 3) is a molecular space of a nonnormal discrete 
three-dimensional flat space E ~. 

only the molecular space is shown. However, an n-dimensional space can 
be easily described by its coordinate matrix of  the form 

XI1 XI2 �9 . . Xln 

X21 X.22 . ' ' "  X2n 

Xpl Xp2 "'" Xpn 

w h e r e x i k = 0 ,  _+1, _ + 2 , . . . ; i = 1 , 2 , 3  . . . .  ; k = l , 2 , . . . , n .  
The standard definition of  the distance on a graph can be applied to 

a discrete space. 

Definition 9. The distance d(vl, v2) between two points v 1 and v 2 in a 
discrete space G is the length of the shortest path joining them if any; 
otherwise d(Vl, v2) = ~ .  

Obviously the distance is a metric. The Planck length can be thought 
of  as the length of an edge of the graph. 

5. M A T H E M A T I C A L  OBSERVATIONS 

Before proceeding to the main result of  this paper, let us pause to 
describe some mathematical observations relating to this approach. The 
following surprising facts were revealed. 
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�9 Suppose that S 1 is a circle of radius R. Let A be a cover of S 1 by 
arcs whose length is small enough compared with R. Denote G(A) the 
intersection graph of this cover. This graph is called the circular arc graph. 
It appears that: 

1. The dimension of  G(A) is equal to one, p(G(A)) = dim(S 1) = 1. 
2. G(A) has the same Euler characteristic and homology groups as $1. 
3. G(A) can be reduced to the cycle graph Ca by contractible transfor- 

mations (Ivashchenko, 1994, 1993a; Ivashchenko and Yeh, 1994) (S~ in 
Fig. 3). 

�9 Suppose we have some two-dimensional closed surface, for example, 
a sphere S 2 of radius R. Consider any tiling A of  S 2 by elements 
(al, a2 . . . .  , an) whose size is small enough relative to the radius R. 
Construct the intersection graph G(A)(vl, v2 . . . .  , vn) in the following way: 
Two vertices vl and v 2 are adjacent iff elements al and a2 have at least one 
common point. In most cases it turns out that: 

1. The dimension of  G(A) is equal to two, p(G(A)) = dim(S 2) = 2. 
2. G(A) has the same Euler characteristic and homology groups as S 2. 
3. G(A) can be reduced by contractible transformations into the 

minimal two-dimensional sphere on six vertices (Ivashchenko, 1994, 1993a; 
Ivashchenko and Yeh, 1994) (S 2 in Fig. 3). 

�9 Suppose that pk is a surface in E n, n = 2, 3 (for spheres, n can be 
any number). Divide E" into a set of cubes with the scale ll of  the cube 
edge and call the molecular space M~(P k) of  pk the family of cubes 
intersecting P~. Denote G1 (pk) the intersection graph of  M1(Pk). Change 
the scale of the cube edge from l 1 to 12 and obtain M2(P k) and G2(P k) by 
using the same structure. It is revealed that in most cases: 

1. p(GI(Pk)) = p(G2(Pk)) = dim(Pk). 
2. GI(P k) and G2(P k) have the same Euler characteristic and the 

homology groups as pk. 
3. G~ (pk) and G2(P k) can be transformed from one to the other with 

four kinds of transformations if the divisions are small enough. 

These facts allow us to assume that the graph and the molecular space 
contain topological and perhaps geometrical characteristics of the surface 
pk. Otherwise, the molecular space M and the graph G are the discrete 
counterparts of a continuous space pk. 

6. SINGULAR SPACES 

This section describes a method of  obtaining new spaces from given 
ones. We will see that there exist n-dimensional normal spaces with some 
peculiar properties. These spaces give rise to new discrete structures that 
have different topologies in different points. 
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Theorem 1. Let G ( p l , P 2 , . . .  ,Pr) and H2(vl, v2) be an n-dimensional 
normal space and the completely disconnected space on two points, respec- 
tively. Then Hg(vl, v2)* G(pl,p2 . . . . .  Pr) is an (n + 1)-dimensional nor- 
mal space. 

Proof. The proof  is by induction. 
(i) For  n = 0, 1 the theorem is verified directly. 

(ii) Assume that the theorem is valid for any n, n-<k.  Let 
G(pl, P2 . . . . .  pr) be a normal (k + 1)-dimensional discrete space. Consider 

W = H2(vl, vz) * G(pl,P2 . . . .  ,Pr) 

It is necessary to show that W is a (k + 2)-dimensional discrete normal 
space. Take any point Pi. With respect to the definition of  a normal space, 
O(pi) in G, denoted O(pi) [ G, is a k-dimensional normal space. Therefore, 
according to the assumption, H z �9 O(pg) is a (k + 1)-dimensional normal 
space. Hence any point p; in W has a rim which is a (k + 1)-dimensional 
normal space. 

The rims of  points vl and v2 in W are the (k + 1)-dimensional normal 
space G by construction. We have 

O(pi ) [W=I-12*(O(p~)[G) ,  i = 1 , 2  . . . . .  n, O(vk)[ W = G ,  k = l , 2  

Therefore, the rim of  any point of W is a (k + 1)-dimensional normal 
space and, by the definition, W is a normal (k + 2)-dimensional space. This 
completes the proof. [] 

We are now in a position to describe n-dimensional normal spaces with 
peculiar properties. 

�9 First construct a space without singularities. Let G be an n-dimen- 
sional sphere S". This means that the rim of  any point of S" is a normal 
sphere S" - 1, and S" can be turned into the minimal S n on 2n + 2 points by 
contractible transformations (Ivashchenko, 1984, 1993a, Ivashchenko and 
Yeh, 1994). 

Consider W = H2(vl, v2) * S". If  p~S",  then O(p) [ W = H 2 ( V l ,  1)2) * 
Sp -  1 = S~. For  points vl and v2 the rim is S n itself. Therefore, the rim of 
any point of  W is a sphere S", and W is a normal (n + 1)-dimensional 
space. It is easy to show that W can be reduced to the minimal (n + 1)- 
sphere S" +i by contractible transformations and therefore W = S" + 1. 

W = H 2 , S n = S  n+l 

O(p) IW=H2,Sg -1 =S~, p~S~ O(/)I)[W=O(/)2)IW=S" 

�9 Suppose that G is a discrete two-dimensional torus T 2 depicted in 
Fig. 5. For  any point p of  T 2 0 ( p )  = Sip. Therefore, in W = H2(/)1,/)2) * T2 
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the rim of any point p is a two-dimensional sphere Sp 2, O(p) ] W = S~. 
However, for points v~ and v2 their rims are the torus T 2 itself, O(vi) = T 2, 
i = 1, 2. Notice that the dimension of T 2 is equal to 2. Hence W is a normal 
three-dimensional space in which the rims of points have a different 
topology. For  points Vl and v2 the space has torus neighborhood T2; in all 
other points the neighborhood is spherical, S 2. We have 

W = H 2 �9 T 2 

o ( p )  I w = 1-12 �9 = s: . ,  p r2; O(v,) I W = O(v2) [ W = r 

�9 Another peculiar three-dimensional space appears when we choose 
the projective plane p2 (Fig. 5) as a basic space G. 

In three-dimensional normal space W = Hz(vl, v2) * p2 the neighbor- 
hoods of vl and v2 are the projective plane p2; the neighborhoods of all 
other points are usual spheres S 2. We have 

W = H 2 ,  P 2 

O(p) I W = 1-12 * S~p = S2p, p~p2; O(vO [ W = O(v2) I W = p2 

�9 In general we can create a number of  three-dimensional normal 
spaces with two singularities by taking discrete models of  closed two- 
dimensional oriented or nonoriented surfaces as a basic space. 

7. THE DIMENSIONAL LOCAL STRUCTURE OF A PHYSICAL 
DISCRETE (3 + 1) S P A C E - T I M E  

Now we are ready to discuss some general features of the physical 
(3 + 1) space-time. We will restrict our consideration to local properties of 
a point v. 

Theorem 2. (3 + 1) space-time is four-dimensional nonnormal. 

Proof  We have to prove that in (3 + 1) space-time the rim of  any 
point is a closed three-dimensional nonnormal discrete space. 

Suppose that a physical object is at a point v of a three-dimensional 
discrete space R(t) at a given moment t and at either the same or the 
nearest point Vl at the next moment t + Dt (Fig. 8a). In (3 + 1) space-time 
(R, T) we have two three-dimensional spaces R(t) and R(t + DO corre- 
sponding to the different moments. Obviously these spaces are joined 
together in the following way. Point v on R(t) should be connected with the 
ball B(v) on R(t + Dr) (Fig. 8b). Therefore, in the (3 + 1) space-time (R, T) 
(Fig. 8c) the rim O(v) [ (R, T)  of  point v is as shown in Fig. 8d. 

(i) If  the rim O(v) lR(t) of v in R(t) is a nonnormal closed two- 
dimensional space, then, for the same reasons as in Theorem 1, O(v) in 
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t -  Dt 

c d Rim O(v) 

Fig. 8. Theorem 2 for (I + 1) space-time. (1 + I) space-time is not normal because O(v) is 
not a normal one-dimensional sphere. 

(R, T) is a nonnormal closed three-dimensional space, and (R, T) is a 
nonnormal four-dimensional space. 

(ii) Suppose that R(t) is a normal three-dimensional space. Then O(v) 
in R(t) is a normal two-dimensional discrete space. Obviously O(v) in 
(R, T) contains the normal three-dimensional space H(Ul, u2) * O(v) JR(O, 
where u~ and u2 are v in R(t + Dr) and R ( t -  Dt). By Theorem 1 it is a 
normal three-dimensional space. Take v 1 in R(t+Dt), v~R(t +Dr), 
v~ cO(v) [ (R, T). It is easy to see that v in R(t + DO is adjacent to all points 
of  the rim of this v t in O(v) I(R, T). Hence O(p) I(R, T) is a nonnormal 
closed three-dimensional space which can be reduced to normal H(u~, u2) * 
O(v) lR(t) by contractible transformations. Thus (R, T) is a nonnormal 
four-dimensional space-time. [] 
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